5 research outputs found

    Separating Agent-Functioning and Inter-Agent Coordination by Activated Modules: The DECOMAS Architecture

    Full text link
    The embedding of self-organizing inter-agent processes in distributed software applications enables the decentralized coordination system elements, solely based on concerted, localized interactions. The separation and encapsulation of the activities that are conceptually related to the coordination, is a crucial concern for systematic development practices in order to prepare the reuse and systematic integration of coordination processes in software systems. Here, we discuss a programming model that is based on the externalization of processes prescriptions and their embedding in Multi-Agent Systems (MAS). One fundamental design concern for a corresponding execution middleware is the minimal-invasive augmentation of the activities that affect coordination. This design challenge is approached by the activation of agent modules. Modules are converted to software elements that reason about and modify their host agent. We discuss and formalize this extension within the context of a generic coordination architecture and exemplify the proposed programming model with the decentralized management of (web) service infrastructures

    Behaviosites: A Novel Paradigm for Affecting Distributed Behavior

    No full text
    Abstract. In this paper we present the Behaviosite paradigm, a new approach to affecting the behavior of distributed agents in a multiagent system, which is inspired by biological parasites with behavior manipulation properties. Be-haviosites are special kinds of agents that ā€œinfect ā€ a system composed of agents operating in that environment. The behaviosites facilitate behavioral changes in agents to achieve altered, potentially improved, performance of the overall sys-tem. Behaviosites need to be designed so that they are intimately familiar with the internal workings of the environment and of the agents operating within it, and behaviosites apply this knowledge for their manipulation, using various infection and manipulation strategies. To demonstrate and test this paradigm, we implemented a version of the El Farol problem, where agents want to go to a bar of limited capacity, and cannot use communication to coordinate their activity. Several solutions to this problem ex-ist, but most yield near-zero utility for the agents. We added behaviosites to the El Farol problem, which manipulate the decision making process of some of the agents by making them believe that bar capacity is lower than it really is. We show that behaviosites overcome the learning ability of the agents, and increase social utility and social fairness significantly, with little actual damage to the overall system, and none to the agents.
    corecore